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Abstract
We present a simple compiler, consisting of only 2000 lines of ML,
for a strict, impure, monomorphic, and higher-order functional lan-
guage. Although this language is minimal, our compiler generates
as fast code as standard compilers like Objective Caml and GCC
for several applications including ray tracing, written in the opti-
mal style of each language implementation. Our primary purpose
is education at undergraduate level to convince students—as well
as average programmers—that functional languages are simple and
efficient.

Categories and Subject DescriptorsD.3.4 [Programming Lan-
guages]: Processors—Compilers; D.3.2 [Programming Languages]:
Language Classifications—Applicative (functional) languages

General Terms Languages, Design

Keywords ML, Objective Caml, Education, Teaching

1. Introduction
The Meta Language, or ML, is a great programming language. It
is one of the very few languages that achieve rather challenging
and often conflicting demands—such as efficiency, simplicity, ex-
pressivity, and safety—at the same time. ML is the only language
ranked within the top threeboth for efficiency (runtime speed) and
for simplicity (code lines) at an informal benchmark site [2] that
compares various programming language implementations. ML is
alsothe language most used by the winners of the ICFP program-
ming contests [3].

Unfortunately, however, it is also an undeniable fact that ML is
a “Minor Language” in the sense that it is not as widespread as C
or Perl, even though the situation is getting better thanks to mature
implementations such as Objective Caml.

Why is ML not so popular? The shortest answer is: because
it is not well-known! However, looking more carefully into this
obvious tautology, I find that one of the reasons (among others [24])
for this “negative spiral of social inertia” is misconceptions about
implementations. Nowadays, there are a number of programmers
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who learn ML, but they often think “I will not use it since I do
not understand how it works.” Or, even worse, many of them make
incorrect assumptions based on arbitrary misunderstanding about
implementation methods. To give a few real examples:

• “Higher-order functions can be implemented only by inter-
preters” (reason: they do not know function closures).

• “Garbage collection is possible only in byte code” (reason: they
only know Java and its virtual machine).

• “Functional programs consume memory because they cannot
reuse variables, and therefore require garbage collection” (rea-
son: ???).

Obviously, these statements must be corrected, in particular when
they are uttered from the mouths of our students.

But how? It does not suffice to give short lessons like “higher-
order functions are implemented by closures,” because they often
lead to another myth such as “ML functions are inefficient because
they are implemented by closures.” (In fact, thanks to known func-
tion call optimization, ML functions are just as efficient as C func-
tions if they can be written in C at all—except that functionpoint-
erscan sometimes be used in more efficient ways than function clo-
sures.) In order to get rid of the essential prejudice that leads to such
ill-informed utterances as above, we end up in giving a full course
on how to implement an efficient compiler of a functional language.
(Throughout this paper, an efficient compiler means a compiler that
generates fast code, not a compiler which itself is fast.) To this goal,
we need a simple but efficient compiler which can be understood
even by undergraduate students or average programmers.

The MinCaml Compilerwas developed for this purpose. It is a
compiler from a strict, impure, monomorphic, and higher-order
functional language—which itself is also called MinCaml and
whose syntax is a subset of Objective Caml—to SPARC Assembly.
Although it is implemented in only 2000 lines of Objective Caml,
its efficiency is comparable to that of OCamlOpt (the optimizing
compiler of Objective Caml) or GCC for several applications writ-
ten in the optimal style of each language implementation.

Curricular Background. MinCaml has been used since year
2001 in a third-year undergraduate course at the Department of
Information Science in the University of Tokyo. The course is just
called Compiler Experiments (in general, we do not call courses by
numbers in Japan), where students are required to implement their
own compiler of the MinCaml language from scratch1, given both
high-level and medium-level descriptions in a natural language and
mathematical pseudo-code (as in Section 4.3 and 4.4). Although
the course schedule varies every year, a typical pattern looks like
Table 1.

1 The source code of MinCaml was not publicly available until March 2005.



Week Topics

1 Introduction, lexical analysis, parsing
2 K-normalization
3 α-conversion,β-reduction, reduction of nestedlet-

expressions
4 Inline expansion, constant folding, elimination of un-

necessary definitions
5 Closure conversion, known function call optimization
6 Virtual machine code generation
7 Function calling conventions
8 Register allocation
9 Register spilling
10 Assembly generation
11 Tail call optimization, continuation passing style
12 Type inference, floating-point number operations
13 Garbage collection [no implementation required]
14 Type-based analyses (case study: escape analysis) [no

implementation required]

Table 1. Course Schedule

Compiler Experiments is associated with another course named
Processor Experiments, where groups of students design and im-
plement their own CPUs by using programmable LSI called FPGA
(field programmable gate arrays). Then, they develop compilers for
those CPUs, execute ray tracing, and compete on the speed of ex-
ecution.2 The goal of these courses is to understand how computer
hardware and software work without treating them as black boxes
(which leads to misconceptions).

Since students in Tokyo learn only liberal arts for the first year
and half, these courses are in fact scheduled in the thirdsemester
of the information science major curriculum. By then, the students
have learned Scheme, ML, and Prolog in addition to C/C++ and
SPARC Assembly (during courses on operating systems and com-
puter architecture) as well as Java (in the liberal arts courses). In
particular, they have already learned how to write a simple inter-
preter for a small subset of ML.

Furthermore, they have already taken lectures on compilers of
imperative languages (including standard algorithms for lexical
analysis, parsing, and register allocation) for one semester. The pur-
pose of our course is to teach efficient compilation of functional
languages, rather than giving ageneralcompiler courseusingfunc-
tional languages.

Design Policy. Given these situations, MinCaml was designed
with three requirements in mind: (1) It must be understood in ev-
ery detail by undergraduate students (through 14 hours of lectures
and 42 hours of programming). (2) It must be able to execute at
least one non-trivial application: ray tracing. (3) It must be as ef-
ficient as standard compilers for this application and other typical
small programs. Thus, it makes no sense to try to implement the full
functionality of ML. To achieve our first goal, MinCaml only sup-
ports aminimalsubset of ML sufficient to meet the other goals. In
particular, we have dropped polymorphism and data types as well
as modules and garbage collection, though basic implementation
techniques for these features are still covered in class.

To make the compiler easier to understand, every design deci-
sion is clearly motivated, as described in the following sections.

Paper Overview. Section 2 presents the source language, Min-
Caml, and Section 3 discusses the design of our compiler. Section 4

2 This competition started in 1995 and its official record was held by the
author’s group since they took the course in 1998 until the FPGA was
upgraded in 2003.

M, N, e ::= expressions
c constants
op(M1, . . . , Mn) arithmetic operations
if M then N1 else N2 conditional branches
let x = M in N variable definitions
x variables
let rec x y1 . . . yn = M and . . . in N

function definitions
M N1 . . . Nn function applications
(M1, . . . , Mn) tuple creations
let (x1, . . . , xn) = M in N reading from tuples
Array.create M N array creations
M1.(M2) reading from arrays
M1.(M2)←M3 writing to arrays

ρ, σ, τ ::= types
π primitive types
τ1 → . . .→ τn → τ function types
τ1 × . . .× τn tuple types
τ array array types
α type variables

Figure 1. Syntax of MinCaml

elaborates on its details. Section 5 gives the results of our experi-
ments to show the efficiency of the compiler. Section 6 compares
our approach with related work and Section 7 concludes with future
directions.

The implementation and documentations of MinCaml are pub-
licly available at http://min-caml.sf.net/index-e.html.
Readers are invited (though not required) to consult them when
the present paper refers to implementation details.

2. The Language
The source language of MinCaml is a minimal subset of Objective
Caml, whose abstract syntax and types are given in Figure 1.
This abstract syntax is designed for the following reasons. First
of all, as any practical functional language does, we have basic
values such as integers, floating-point numbers, booleans, tuples,
and functions. Each of them requires at least one constructor (such
as constants, function definitions, and tuple creations) and one
destructor (such as arithmetic operations, conditional branches,
function applications, and reading from tuples).

Conditional branches must be a special form since we do not
have more general data types and pattern matching. Tuples are de-
structed using a simple form of pattern matching, instead of projec-
tions like #i(M). This avoids the flex record problem: functions
such asf(x) = #1(x) do not have principal types in the standard
type system of ML without record polymorphism [19, 22].

Higher-order functions are supported since functions can be re-
ferred to just as variables, and since nested function definitions
with free variables are allowed. For simplicity, however, partial
function applications are not automatically recognized by the com-
piler and must be explicitly written by hand, for example like
let rec f3 y = f 3 y in f3 instead of justf 3 if f is defined
to take two arguments. In this respect, our language is more similar
to Scheme than to ML.

Since our primary application is ray tracing, we also need arrays
for efficient representation of vectors and matrices. Array construc-
tion must be a special syntactic form because it is parametric in the
element type. (Objective Caml can express this by using a polymor-
phic library function, but MinCaml cannot.) Once we have arrays,
reference cells can also be implemented as arrays with just one ele-



ment. This implementation does not affect efficiency as we anyway
have no boundary checks for array accesses.

The types are standard monomorphic types except forn-ary
function types, which reflect the lack of partial function applica-
tions as mentioned above, and type variables, which will be used
for type inference.

These abstract syntax and types are literally implemented as ML
data typesSyntax.t andType.t, except that bound variables in
Syntax.t are annotated with elements ofType.t to keep the type
information for later use. Also, for readability, a function definition
is represented by a record with three fieldsname, args andbody
instead of their triple.

Why Objective Caml? We have chosen Objective Caml as the
meta language of MinCaml, as well as using its subset as the object
language. This is just because Objective Caml is the only statically
typed functional language that is taught well in our curriculum
(and because static typing—in particular, exhaustiveness check of
pattern matching—helps much when students write a compiler).
Otherwise, either Standard ML or even Haskell would be fine
as well (though laziness might affect efficiency and require more
optimizations such as strictness analysis and linearity analysis).

Why no data types and no pattern matching?As already stated
above, we have omitted data types (including lists) and pattern
matching. This may sound disappointing, as almost all real pro-
grams in ML use them. However, we find that pattern matching is
by far more complex than other features when compiling core ML.
In addition, it is still possible to write interesting programs without
using any data types (or patter matching), as shown in Section 5.
Besides, the students are already busy enough in implementing
other, more basic features such as higher-order functions. A pos-
sible alternative would be to supply a pattern matcher implemented
by the instructor, but we rejected this approach because the whole
point of our course was to avoid such a “black box” in the compiler.

Why no polymorphism? We have omitted polymorphism as well.
Since we do not have data types at all (let alone polymorphic
data types), there is much less use for polymorphic functions. In
addition, polymorphic functions may affect even the efficiency
of monomorphic functions (if implemented by boxing floating-
point numbers, for example). On the other hand, it would not be
too hard to implement polymorphic functions by code duplication
(as in MLton [4]) without sacrificing efficiency. Polymorphic type
inference would not be a big problem, either, because it is only a
little more complex than the monomorphic version.

In the actual course, we offer brief explanation of the two basic
methods above (boxing and code duplication) of implementing
polymorphism. Type inference withlet-polymorphism is taught
(and implemented in a simple interpreter) in a previous course on
ML programming.

Why no garbage collection? Once we have decided to drop data
types, many of the interesting programs can be written in natural
ways without allocating too many heap objects. As a result, they
can run with no garbage collection at all.

Of course, however, garbage collection is a fundamental feature
of most modern programming languages. Thus, we offer a lecture
on garbage collection for 4 hours (with no programming tasks),
covering basic algorithms such as reference counting, copying GC,
and mark-and-sweep GC as well as more advanced topics (without
too much detail) including incremental GC, generational GC, and
conservative GC.

Why no array boundary checks? While it is easy to implement
array boundary checks in MinCaml, we omitted them by default
for fairer comparison with C (and OCamlOpt-unsafe) as in Sec-

Module LoC

Lexical analysis (in OCamlLex) 102
Parsing (in OCamlYacc) 175
Type inference 174
K-normalization 195
α-conversion 52
β-reduction 43
Reduction of nestedlet-expressions 22
Inline expansion 47
Constant folding 50
Elimination of unnecessary definitions 39
Closure conversion 136
Virtual machine code generation 208
13-Bit immediate optimization 42
Register allocation 262
Assembly generation 256

Table 2. Main Modules of The MinCaml Compiler

tion 5. Optimizing away redundant checks would be much harder,
as it requires the compiler to solve integer constraints in general.

External functions and arrays. Unlike in ordinary ML, free vari-
ables in MinCaml programs are automatically treated as external—
either external functions or external arrays—so their declarations
can be omitted. This is just for simplicity: since MinCaml is sim-
ply typed, their types can easily be inferred from the programs [15].

3. The Compiler
The main modules of The MinCaml Compiler are listed in Table 2,
along with their lines of code. This section discusses major choices
that we have made in their design and implementation. Further
details about the internal structure of MinCaml are described in
Section 4.

Lexical analysis and parsing. Although syntax used to be a cen-
tral issue in conventional compiler courses, we spend as little time
as possible on it in our course: that is, we just give students our
lexer and parser written in OCamlLex and OCamlYacc. The reason
is that lexical analysis and parsing have already been taught in an-
other compiler course (for imperative languages) in our curriculum.
Possible alternatives to Lex and Yacc would be parser combinators
or packrat parsing [12], but we did not adopt them as syntax is any-
way out of scope.

K-normalization. After parsing (and type inference), we use K-
normal forms [7] as the central intermediate language in MinCaml.
K-normal forms are useful as it makes intermediate computations
and their results explicit, simplifying many optimizations including
inline expansion and constant folding.

We did not choose A-normal forms [11] because we did not
need them: that is, A-normalizingall K-normal forms would
help little in our compiler. On the contrary,requiring the inter-
mediate code to be A-normal forms (i.e., forbidding nestedlet-
expressions) complicates inline expansion.

In addition, A-normalization in the strict sense [11] eliminates
all conditional branches in non-tail positions by duplicating their
evaluation contexts, which can cause code explosion if applied lit-
erally. But if we allow conditional branches in non-tail positions,
we lose the merit of A-normal forms thate1 in let x = e1 in e2

is always an atomic expression (becausee1 may be a conditional
branchif e11 then e12 else e13, wheree12 ande13 can them-
selves belet-expressions).

We did not choose CPS [5], either, for a similar reason: it does
not allow conditional branches in non-tail positions and requires



extra creation of the continuation closure (or inline expansion of
it).

Inline expansion. Our algorithm for inlining is rather simple:
it expands all calls to functions whose size (number of syntactic
nodes in K-normal form) is less than a constant threshold given by
the user. Since this does not always terminate when repeated (e.g.,
considerlet rec f x = f x in f 3), the number of iterations is
also bounded by a user-given constant. Although this may seemtoo
simple, it just works well for our programs—including recursive
functions as well as loops implemented by tail recursion (achieving
the effect of loop unrolling)—with reasonable increase of code size.
By contrast, other inlining algorithms (see [20] for example) are
much more complex than ours. Note that our inlining algorithm is
implemented in only 47 lines, including the “size” function.

Closure conversion. MinCaml supports higher-order functions
by closure conversion. It optimizes calls to known functions with
no free variables. Again, this known function optimization is sim-
ple and effective enough for our purpose. Indeed, it optimizesall
function calls in the critical parts of our benchmark applications.

In addition to K-normal form expressions, we introduce three
special constructsmake closure, apply closure, and apply
direct (which means known function calls) in the intermediate
language after closure conversion. This enables us to keep the sim-
ple types without more advanced mechanisms such as existential
types [17].

Register Allocation. The most sophisticated process in MinCaml
(or perhaps in any modern compiler) is register allocation. Al-
though many standard algorithms exist for imperative languages
(e.g., [8, 21]), we find them unnecessarily complicated for Min-
Caml because its variables are never destructively updated, obvi-
ating the standard notion of “def-use chains” [18]. In addition, it
is always better to spill a variableas early as possible, if at all.
Thus, we have adopted a simpler greedy algorithm with backtrack-
ing (for early spilling) and look-ahead (for register targeting [5]).
We need not worry about coverage, because standard algorithms
have already been taught in the other compiler course (for impera-
tive languages).

4. Inside The MinCaml Compiler
The architecture of MinCaml adheres to the following principle.
A compiler, by definition, is a program that transforms high-level
programs to lower-level code. For example, the ML function

let rec gcd m n =
if m = 0 then n else
if m <= n then gcd m (n - m) else
gcd n (m - n)

is compiled into the SPARC Assembly code
gcd.7: cmp %i2, 0

bne be_else.18
nop
mov %i3, %i2
retl
nop

be_else.18: cmp %i2, %i3
bg ble_else.19
nop
sub %i3, %i2, %i3
b gcd.7
nop

ble_else.19: sub %i2, %i3, %o5
mov %i3, %i2
mov %o5, %i3
b gcd.7
nop

which, at a first glance, looks totally different. The MinCaml Com-
piler, like many other modern compiles, bridges this huge gap by
defining appropriate intermediate languages and applying simple
program transformations one by one. The major five gaps between
MinCaml and SPARC Assembly are:

1. Types. MinCaml has a type discipline; assembly does not.

2. Nested expressions. MinCaml code is tree-structured with com-
pound instructions; assembly code is a linear sequence of
atomic instructions.

3. Nested function definitions. In MinCaml, we can define a func-
tion inside another function like

let rec make_adder x =
let rec adder y = x + y in
adder in

(make_adder 3) 7

but assembly has only top-level “labels.”

4. MinCaml has data structures such as tuples and arrays, while
assembly does not.

5. In MinCaml, we can use as many variables as we want, but
only a limited number of registers are available in assembly
(and therefore they sometimes must be spilled to memory).

To bridge these gaps, MinCaml applies translations such as type
inference, K-normalization, closure conversion, virtual machine
code generation, register allocation (in this order). In what follows,
we will explain the compilation processes of MinCaml including
these translations and other optimizations.

4.1 Lexical Analysis and Parsing (102 + 175 Lines)

type Id.t (* variable names *)
type ’a M.t (* finite maps from Id.t to ’a *)
type S.t (* finite sets of Id.t *)

type Type.t (* types *)
type Syntax.t (* expressions *)

The lexical analysis and parsing of MinCaml are implemented
with standard tools, OCamlLex and OCamlYacc. As usual, they
translate a string of characters to a sequence of tokens and then to
an abstract syntax tree, which is necessary for any complex pro-
gram manipulation. There is nothing special to be noted: indeed, in
our course, the fileslexer.mll andparser.mly are just given to
students in order to avoid the overhead of learning the tools them-
selves. The only non-trivial point—if any—is function arguments:
to parsex-3 as integer subtraction rather than function applica-
tion x(-3), the parser distinguishes “simple expressions” (expres-
sions that can be function arguments with no extra parentheses)
from other expressions like-3, just as Objective Caml does.

4.2 Type Inference (174 Lines)

val Typing.f : Syntax.t -> Syntax.t
val Typing.extenv : Type.t M.t ref

(* "private" function to
destructively substitute type variables *)

val Typing.g : Type.t M.t -> Syntax.t -> Type.t

Since MinCaml is an implicitly typed language but our com-
piler relies on the code being annotated with types, we first carry
out a monomorphic version of Hindley-Milner type inference. It
is also implemented in a standard way, representing type variables
asType.t option ref and substitutingNone with Some τ during
unification. The only deviation is our treatment of external vari-
ables: when the type checker sees a free variable not found in the



type environment, this variable is assumed as “external” and added
to a special type environmentTyping.extenv for external vari-
ables. Thus, they need not be declared in advance: their types are
inferred just as ordinary variables. This principal typing function-
ality is peculiar to MinCaml and not applicable to full ML with
let-polymorphism [15]. After the type inference, instantiated type
variables (references toSome τ ) are replaced with their contents
(typeτ ). Any uninstantiated type variables is defaulted (arbitrarily)
to int.

4.3 K-Normalization (195 Lines)

type KNormal.t (* K-normalized expressions *)

val KNormal.f : Syntax.t -> KNormal.t
val KNormal.fv : KNormal.t -> S.t

We stated that compilation is about bridging the gaps between
high-level programs and low-level code. One of the gaps is nested
expressions: usually, a sequence of several instructions (likeadd,
add, add, andsub) are needed to computer the value of a com-
pound expression (likea+b+c-d).

This gap is bridged by a translation calledK-normalization,
which defines every intermediate result of computation as a vari-
able. For example, the previous expression can be translated to:

let tmp1 = a + b in
let tmp2 = tmp1 + c in
tmp2 - d

In general, the process of K-normalization can be described as
follows. First, we define the abstract syntax of the intermediate
language, K-normal forms, which is implemented as ML data type
KNormal.t.

M, N, e ::= c
| op(x1, . . . , xn)
| if x = y then M else N
| if x ≤ y then M else N
| let x = M in N
| x
| let rec x y1 . . . yn = M and . . . in N
| x y1 . . . yn

...

The main point is that every target of basic operations—such as
arithmetic operations, function applications, tuple creations, and
reading from tuples—is now a variable, not a nested expression,
because nested expressions are converted into sequences oflet-
expressions as in the example above. This conversion can be de-
scribed by the following functionK. For every equation in this def-
inition, all variables not appearing on the left-hand side are freshly
generated. Although this function is straightforward, it is presented
here for the purpose of showing how the mathematical pseudo-code
given to students (and required to be implemented in Objective
Caml, as mentioned in Section 1) looks like in general.

K(c) = c

K(op(M1, . . . , Mn)) =

let x1 = K(M1) in

. . .

let xn = K(Mn) in

op(x1, . . . , xn)

K(if M1 = M2 then N1 else N2) =

let x = K(M1) in let y = K(M2) in

if x = y then K(N1) else K(N2)

K(if M1 6= M2 then N1 else N2) =

K(if M1 = M2 then N2 else N1)

K(if M1 ≤M2 then N1 else N2) =

let x = K(M1) in let y = K(M2) in

if x ≤ y then K(N1) else K(N2)

K(if M1 ≥M2 then N1 else N2 =

K(if M2 ≤M1 then N1 else N2)

K(if M1 > M2 then N1 else N2) =

K(if M1 ≤M2 then N2 else N1)

K(if M1 < M2 then N1 else N2) =

K(if M2 ≤M1 then N2 else N1)

K(if M then N1 else N2) =

K(if M = false then N2 else N1)

(if M is not a comparison)

K(let x = M in N) =

let x = K(M) in K(N)

K(x) = x

K(let rec f x1 . . . xn = M and . . . in N) =

let rec f x1 . . . xn = K(M) and . . . in K(N)

K(M N1 . . . Nn) =

let x = K(M) in

let y1 = K(N1) in

. . .

let yn = K(Nn) in

x y1 . . . yn

...

As apparent from the definitions above, we also translate con-
ditional branches into two special forms combining comparisons
and branches. This translation bridges another gap between Min-
Caml and assembly where branch instructions must follow com-
pare instructions. Although unrelated to K-normalization, it is im-
plemented here to avoid introducing yet another intermediate lan-
guage.

In addition, as an optional optimization, our actual implementa-
tion avoids inserting alet-expression if the term is already a vari-
able. This small improvement is implemented in auxiliary function
insert let.

let insert_let (e, t) k =
match e with
| Var(x) -> k x
| _ ->

let x = Id.gentmp t in
let e’, t’ = k x in
Let((x, t), e, e’), t’

It takes an expressione (with its type t) and a continuationk,
generates a variablex if e is not already a variable, appliesk to
x to obtain the bodye’ (with its typet’), inserts alet-expression
to bind x to e, and returns it (witht’). The types are passed
around just because they are necessary for type annotations of
bound variables, and are not essential to K-normalization itself.

This trick not only improves the result of K-normalization but
also simplifies its implementation. (This would be yet another evi-
dence that continuations are relevant tolet-insertion [16] in gen-
eral.) For example, the case for integer addition can be coded as

(* in pattern matching over Syntax.t *)
| Syntax.Add(e1, e2) ->

insert_let (g env e1)



(fun x -> insert_let (g env e2)
(fun y -> Add(x, y), Type.Int))

and reading from arrays as:
| Syntax.Get(e1, e2) ->

(match g env e1 with
| (_, Type.Array(t)) as g_e1 ->

insert_let g_e1
(fun x -> insert_let (g env e2)

(fun y -> Get(x, y), t))
| _ -> assert false)

The false assertion in the last line could be removed if K-normalization
were fused with type inference, but we rejected this alternative in
favor of modularity.

4.4 α-Conversion (52 Lines)

val Alpha.f : KNormal.t -> KNormal.t

(* also public for reuse by Inline.g *)
val Alpha.g : Id.t M.t -> KNormal.t -> KNormal.t

Following K-normalization, MinCaml renames all bound vari-
ables of a program to fresh names, which is necessary for the cor-
rectness of transformations such as inlining. It can be specified by
the following functionα, where variables not appearing on the left-
hand side are freshly generated andε(x) is defined to bex whenx
is not in the domain ofε.

αε(c) = c
αε(op(x1, . . . , xn)) =

op(ε(x1), . . . , ε(xn))
αε(if x = y then M1 else M2) =

if ε(x) = ε(y) then αε(M1) else αε(M2)
αε(if x ≤ y then M1 else M2) =

if ε(x) ≤ ε(y) then αε(M1) else αε(M2)
αε(let x = M in N) =

let x′ = αε(M) in αε,x7→x′(N)
αε(x) = ε(x)
αε(let rec f x1 . . . xm = M1

and g y1 . . . yn = M2

. . .
in N) =
let rec f ′ x′1 . . . x′m = αε,σ,x1 7→x′1,...,xm 7→x′m(M1)

and g′ y′1 . . . y′n = αε,σ,y1 7→y′1,...,yn 7→y′n(M2)

. . .
in αε,σ(N) (whereσ = f 7→ f ′, g 7→ g′, . . .)

αε(x y1 . . . yn) =
ε(x) ε(y1) . . . ε(yn)
...

It is implemented by a recursive functionAlpha.g, which takes a
(sub-)expression with a mappingε from old names to new names
and returns anα-converted expression. If a variable is not found
in the mapping, it is considered external and left unchanged. This
behavior is implemented by auxiliary functionAlpha.find, which
is used everywhere inAlpha.g since variables are ubiquitous in K-
normal forms.

Naturally, as long as we are justα-converting a whole program,
we only need to export the interface functionAlpha.f which
callsAlpha.g with an empty mapping. Nevertheless, the internal
functionAlpha.g is also exported because it is useful for inlining
as explained later.

4.5 β-Reduction (43 Lines)

val Beta.f : KNormal.t -> KNormal.t

(* private *)
val Beta.g : Id.t M.t -> KNormal.t -> KNormal.t

It is often useful—both for clarify and for efficiency—to reduce
expressions such aslet x = y in x + y to y + y, expanding
the aliasing of variables. We call the expansionβ-reductionof K-
normal forms. (Of course, this name originates fromβ-reduction in
λ-calculus, of which ours is a special case iflet-expressions are
represented by applications ofλ-abstractions, like(λx. x+y)y for
example.) It is not always necessary in ordinary programs, but is
sometimes effective after other transformations.

β-reduction in MinCaml is implemented by functionBeta.g,
which takes an expression with a mapping from variables to equal
variables and returns theβ-reduced expression. Specifically, when
we see an expression of the formlet x = e1 in e2, we first
β-reducee1. If the result is a variabley, we add the mapping
from x to y and then continue byβ-reducinge2. Again, since
variables appear everywhere in K-normal forms, auxiliary function
Beta.find is defined and used for brevity (as inα-conversion) to
substitute variables if and only if they are found in the mapping.

4.6 Reduction of Nestedlet-Expressions (22 Lines)

val Assoc.f : KNormal.t -> KNormal.t

Next, in order to expose the values of nestedlet-expressions
for subsequent transformations, we flatten nestedlet-expressions
such aslet x = (let y = e1 in e2) in e3 to let y =
e1 in let x = e2 in e3. This “reduction” by itself does not affect
the efficiency of programs compiled by MinCaml, but it helps other
optimizations (e.g., constant folding ofe2) as well as simplifying
the intermediate code.

This transformation is implemented by functionAssoc.f.
Upon seeing an expression of the formlet x = e1 in e2, we
first reducee1 to e′1 ande2 to e′2 by recursion. Then, ife′1 is of the
form let . . . in e, we return the expressionlet . . . in let x =
e in e′2. This verbal explanation may sound tricky but the actual
implementation is simple:

(* in pattern matching over KNormal.t *)
| Let(xt, e1, e2) ->

let rec insert = function
| Let(yt, e3, e4) ->

Let(yt, e3, insert e4)
| LetRec(fundefs, e) ->

LetRec(fundefs, insert e)
| LetTuple(yts, z, e) ->

LetTuple(yts, z, insert e)
| e -> Let(xt, e, f e2) in

insert (f e1)

Indeed,assoc.ml consists of only 22 lines as noted above.

4.7 Inline Expansion (47 Lines)

val Inline.threshold : int ref
val Inline.f : KNormal.t -> KNormal.t

(* private *)
val Inline.size : KNormal.t -> int
val Inline.g : ((Id.t * Type.t) list * KNormal.t) M.t ->

KNormal.t -> KNormal.t

The next optimization is the most effective one: inline expan-
sion. It replaces calls to small functions with their bodies. MinCaml
implements it in moduleInline as follows.

Upon seeing a function definitionlet rec f x1 . . . xn =
e in . . ., we compute the size ofe by Inline.size. If this size
is less than the value of integer referenceInline.threshold set



by the user, we add the mapping from function namef to the pair
of formal argumentsx1, . . . , xn and bodye. Then, upon seeing
a function callf y1 . . . yn, we look up the formal arguments
x1, . . . , xn of f and its bodye, and returne with x1, . . . , xn

substituted byy1, . . . , yn.
However, since inlined expressions are copies of function bod-

ies, their variables may be duplicated and therefore must beα-
converted again. Fortunately, the previous process of substituting
formal arguments with actual arguments can be carried out by
Alpha.g together withα-conversion, just by using the correspon-
dence fromx1, . . . , xn to y1, . . . , yn (instead of an empty map-
ping) as the initial mapping. Thus, the inline expansion can be im-
plemented just as

(* pattern matching over KNormal.t *)
| App(x, ys) when M.mem x env ->

let (zs, e) = M.find x env in
let env’ =

List.fold_left2
(fun env’ (z, t) y -> M.add z y env’)
M.empty zs ys in

Alpha.g env’ e

whereM is a module for mappings.

4.8 Constant Folding (50 Lines)

val ConstFold.f : KNormal.t -> KNormal.t

(* private *)
val ConstFold.g : KNormal.t M.t -> KNormal.t -> KNormal.t

Once functions are inlined, many operations have arguments
whose values are already known, asx+y in let x = 3 in let y =
7 in x+y. Constant folding carries out such operations at compile-
time and replaces them with constants like10. MinCaml imple-
ments it in functionConstFold.g. It takes an expression with a
mapping from variables to their definitions, and returns the expres-
sion after constant folding. For example, given an integer addition
x + y, it examines whether the definitions ofx andy are integer
constants. If so, it calculates the result and returns it right away.
Conversely, given a variable definitionlet x = e in . . ., it adds
the mapping fromx to e. This is applied to floating-point numbers
and tuples as well.

4.9 Elimination of Unnecessary Definitions (39 Lines)

val Elim.f : KNormal.t -> KNormal.t

(* private *)
val Elim.effect : KNormal.t -> bool

After constant folding, we often find unused variable definitions
(and unused function definitions) as inlet x = 3 in let y =
7 in 10. MinCaml removes them in moduleElim.

In general, ife1 has no side effect andx does not appear free in
e2, we can replacelet x = e1 in e2 just with e2. The presence
of side effects is checked byElim.effect and the appearance of
variables are examined byKNormal.fv. Since it is undecidable
whether an expression has a real side effect, we treat any write to
an array and any call to a function as side-effecting.

Mutually recursive functions defined by a singlelet rec are
eliminated only when none of the functions is used in the continu-
ation. If any of the functions are used after the definition, then all
of them are kept.

4.10 Closure Conversion (136 Lines)

type Id.l (* label names *)
type Closure.t (* closure-converted expressions *)

type Closure.fundef =
{ name : Id.l * Type.t;

args : (Id.t * Type.t) list;
formal_fv : (Id.t * Type.t) list;
body : Closure.t }

type Closure.prog =
Prog of Closure.fundef list * Closure.t

val Closure.f : KNormal.t -> Closure.prog
val Closure.fv : Closure.t -> S.t

(* private *)
val Closure.toplevel : Closure.fundef list ref
val Closure.g : Type.t M.t (* typenv for fv *) ->

S.t (* known functions *) ->
KNormal.t -> Closure.t

Another gap still remaining between MinCaml and assembly is
nested function definitions, which are flattened by closure conver-
sion. It is the second most complicated process in our compiler.
(The first is register allocation, which is described later.) What fol-
lows is how we explain closure conversion to students.

The flattening of nested function definitions includes easy cases
and hard cases. For example,

let rec quad x =
let rec dbl y = y + y in
dbl (dbl x) in

quad 123

can be flattened like
let rec dbl y = y + y ;;
let rec quad x = dbl (dbl x) ;;
quad 123

just by moving the function definition. However, a similar manipu-
lation would convert

let rec make_adder x =
let rec adder y = x + y in
adder in

(make_adder 3) 7

into
let rec adder y = x + y ;;
let rec make_adder x = adder ;;
(make_adder 3) 7

which makes no sense at all. This is because the functiondbl has
no free variable whileadder has a free variablex.

Thus, in order to flatten function definitions with free variables,
we have to treat not only the bodies of functions such asadder, but
also the values of their free variables such asx together. In ML-like
pseudo code, this treatment can be described as:

let rec adder x y = x + y ;;
let rec make_adder x = (adder, x) ;;
let (f, fv) = make_adder 3 in
f fv 7

First, functionadder takes the value of its free variablex as an
argument. Then, when the function is returned as a value, its body
is paired with the value of its free variable. This pair is called a
function closure. In general, when a function is called, its body and
the values of its free variables are extracted from the closure and
supplied as arguments.

The simple-minded approach of generating a closure for every
function is too inefficient. Closure conversion gets more interest-
ing when we try to separate the functions that require closures
from those that can be called in more conventional ways. Thus, the
closure conversion routineClosure.g of MinCaml takes the set
known of functions that are statically known to have no free vari-
ables (and therefore can be called directly), and converts a given
expression by using this information.



The results of closure conversion are represented in data type
Closure.t that represents the following abstract syntax:

P ::=
{D1, . . . , Dn}, M whole program

D ::=
`(y1, . . . , ym)(z1, . . . , zn) = N top-level function definition

M, N, e ::=
c constants
op(x1, . . . , xn) arithmetic operations
if x = y then M else N conditional branches
if x ≤ y then M else N conditional branches
let x = M in N variable definitions
x variables
make closure x = (`, (z1, . . . , zn)) and . . . in M

closure creation
apply closure(x, y1, . . . , yn) closure-based function call
apply direct(`, y1, . . . , yn) direct function call
...

It is similar to KNormal.t, but includes closure creationmake
closure and top-level functionsD1, . . . , Dn instead of nested
function definitions. In addition, instead of general function calls, it
has closure-based function callsapply closure and direct func-
tion calls apply direct that do not use closures. Furthermore,
in the processes that follow, we distinguish the type of top-level
function names (labels) from the type of ordinary variable names
in order to avoid confusions. Note thatapply closure uses vari-
ables whileapply direct uses labels. This is because closures are
bound to variables (bymake closure) while top-level functions
are called through labels.

Upon seeing a general function callx y1 . . . yn, Closure.g
checks if the functionx belongs to the setknown. If so, it returns
apply direct. If not, it returnsapply closure.

| KNormal.App(x, ys) when S.mem x known ->
AppDir(Id.L(x), ys)

| KNormal.App(f, xs) ->
AppCls(f, xs)

Here,AppDir andAppCls are constructors in theClosure module
that correspond toapply direct and apply closure, S is a
module for sets, andId.L is the constructor for labels.

Function definitionslet rec x y1 . . . yn = e1 in e2 are
processed as follows. First, we assume that the functionx has no
free variable, add it toknown, and convert its bodye1. Then, ifx
indeed has no free variable, we continue the process and convert
e2. Otherwise, we rewind the values ofknown andtoplevel (a
reference cell holding top-level functions), and redo the conversion
of e1. (This may take exponential time with respect to the depth of
nested function definitions, which is small in practice.) Finally, ifx
never appears as a proper variable (rather than a top-level label) in
e2, we omit the closure creationmake closure for functionx.

This last optimization needs some elaboration. Even ifx has
no free variable, it may still need a representation as a closure,
provided that it is returned as a value (consider, for example,
let rec x y = . . . in x). This is because a user who receives
x as a value does not know in general if it has a free variable or not,
and therefore must anyway useapply closure to call the func-
tion through its closure. In this case, we do not eliminatemake
closure sincex appears as a variable ine2. However, ifx is just
called as a function, for example likelet rec x y = . . . in x 123,
then we eliminate the closure creation forx because it appears only
as a label (not a variable) inapply direct.

The closure conversion of mutually recursive functions is a lit-
tle more complicated. In general, mutually recursive functions can
share closures [5], but MinCaml does not implement this sharing.
This simplifies the virtual machine code generation as discussed

later. The drawback is that mutually recursive calls to functions
with free variables get slower. However, we donot lose the effi-
ciency of mutually recursive calls to functions withno free vari-
ables, because they are anyway converted toapply direct.

4.11 Virtual Machine Code Generation (208 Lines)

type SparcAsm.t (* instruction sequences *)
type SparcAsm.exp (* atomic expressions *)
type SparcAsm.fundef =
{ name : Id.l;

args : Id.t list; (* int arguments *)
fargs : Id.t list; (* float arguments *)
body : SparcAsm.t;
ret : Type.t (* return type *)}

type SparcAsm.prog =
Prog of (Id.l * float) list * (* float table *)

SparcAsm.fundef list *
SparcAsm.t

val SparcAsm.fv : SparcAsm.t -> Id.t list (* use order *)
val Virtual.f : Closure.prog -> SparcAsm.prog

(* private *)
val Virtual.data : (Id.l * float) list ref (* float table *)
val Virtual.h : Closure.fundef -> SparcAsm.fundef
val Virtual.g : Type.t M.t -> Closure.t -> SparcAsm.t

After closure conversion, we generate SPARC Assembly. Since
it is too hard to output real assembly, we first generatevirtual ma-
chine code similar to SPARC Assembly. Its main “virtual” aspects
are:

• Infinite number of variables (instead of finite number of regis-
ters)

• if-then-else expressions and function calls (instead of com-
parisons, branches, and jumps)

This virtual assembly is defined in moduleSparcAsm. The ML
data typeSparcAsm.exp almost corresponds to each instruction of
SPARC (exceptIf andCall). Instruction sequencesSparcAsm.t
are eitherAns, which returns a value at the end of a function, or a
variable definitionLet. The other instructionsForget, Save, and
Restore will be explained later.

(* C(i) represents 13-bit immediates of SPARC *)
type id_or_imm = V of Id.t | C of int

type t =
| Ans of exp
| Let of (Id.t * Type.t) * exp * t
| Forget of Id.t * t

and exp = (* excerpt *)
| Set of int
| SetL of Id.l
| Add of Id.t * id_or_imm
| Ld of Id.t * id_or_imm
| St of Id.t * Id.t * id_or_imm
| FAddD of Id.t * Id.t
| LdDF of Id.t * id_or_imm
| StDF of Id.t * Id.t * id_or_imm
| IfEq of Id.t * id_or_imm * t * t
| IfFEq of Id.t * Id.t * t * t
| CallCls of Id.t * Id.t list * Id.t list
| CallDir of Id.l * Id.t list * Id.t list
| Save of Id.t * Id.t
| Restore of Id.t

Virtual.f, Virtual.h, andVirtual.g are the three functions
that translate closure-converted programs to virtual machine code.
Virtual.f translates the whole program (the list of top-level func-
tions and the expression of a main routine),Virtual.h translates



each top-level function, andVirtual.g translates an expression.
The point of these translations is to make explicit the memory ac-
cesses for creating, reading from, and writing to closures, tuples,
and arrays. Data structures such as closures, tuples, and arrays are
allocated in the heap, whose address is remembered in special reg-
isterSparcAsm.reg hp.

For example, to read from an array, we shift its offset according
to the size of the element to be loaded.

| Closure.Get(x, y) ->
let offset = Id.genid "o" in
(match M.find x env with
| Type.Array(Type.Unit) -> Ans(Nop)
| Type.Array(Type.Float) ->

Let((offset, Type.Int), SLL(y, C(3)),
Ans(LdDF(x, V(offset))))

| Type.Array(_) ->
Let((offset, Type.Int), SLL(y, C(2)),

Ans(Ld(x, V(offset))))
| _ -> assert false)

In tuple creationClosure.Tuple, each element is stored with
floating-point numbers aligned (in 8 bytes), and the starting address
is used as the tuple’s value. Closure creationClosure.MakeCls
stores the address (label) of the function’s body with the values
of its free variables—also taking care of alignment—and uses the
starting address as the closure’s value. As mentioned in the previous
section, this is easy because we generate separate closures with no
sharing at all even for mutually recursive functions. Accordingly,
at the beginning of each top-level function, we load the values of
free variables from the closure, where every closure-based function
application (AppCls) is assumed to set the closure’s address to
registerSparcAsm.reg cl.

In addition, since SPARC Assembly does not support floating-
point immediates, we need to create a constant table in memory. For
this purpose,Virtual.g records floating-point constants to global
variableVirtual.data.

4.12 13-Bit Immediate Optimization (42 Lines)

val Simm13.f : SparcAsm.prog -> SparcAsm.prog

In SPARC Assembly, most integer operations can take an imme-
diate within 13 bits (no less than−4096 and less than4096) as the
second operand. An optimization using this feature is implemented
in moduleSimm13. It is almost the same as constant folding and
elimination of unnecessary definitions, except that the object lan-
guage is virtual assembly and the constants are limited to 13-bit
integers.

4.13 Register Allocation (262 Lines)

[Update on September 17, 2008: The register allocator now uses a
simpler algorithm. It omits the backtracking (ToSpill and NoSpill)
explained below.]

val RegAlloc.f : SparcAsm.prog -> SparcAsm.prog

(* private *)
type g_result =

NoSpill of SparcAsm.t * Id.t M.t
| ToSpill of SparcAsm.t * Id.t list
val RegAlloc.h : SparcAsm.fundef -> SparcAsm.fundef
val RegAlloc.g : Id.t * Type.t (* dest *) ->

SparcAsm.t (* cont *) ->
Id.t M.t (* regenv *) ->
SparcAsm.t -> g_result

val RegAlloc.g’ : Id.t * Type.t (* dest *) ->
SparcAsm.t (* cont *) ->
Id.t M.t (* regenv *) ->

SparcAsm.exp -> g_result

The most complex process in The MinCaml Compiler is register
allocation, which implements infinite number of variables by finite
number of registers. As discussed in Section 3, our register alloca-
tor adopts a greedy algorithm with backtracking for early spilling
and look-ahead for register targeting.

4.13.1 Basics

First of all, as a function calling convention, we will assign argu-
ments from the first register toward the last register. (Our compiler
does not support too many arguments that do not fit in registers.
They must be handled by programmers, for example by using tu-
ples.) We set return values to the first register. These are processed
in RegAlloc.h, which allocates registers in each top-level func-
tion.

After that, we allocate registers in function bodies and the main
routine.RegAlloc.g takes an instruction sequence with a mapping
regenv from variables to registers that represents the current reg-
ister assignment, and returns the instruction sequence after register
allocation. The basic policy of register allocation is to avoid regis-
ters already assigned to live variables. The set of live variables are
calculated bySparcAsm.fv.

However, when allocating registers in the instruction sequence
e1 of let x = e1 in e2, not onlye1 but also its “continuation”e2

must be taken into account for the calculation of live variables. For
this reason,RegAlloc.g andRegAlloc.g’, which allocates regis-
ters in individual instructions, also take the continuation instruction
sequencecont and use it in the calculation of live variables.

4.13.2 Spilling

We sometimes cannot allocate any register that is not live, since the
number of variables is infinite while that of registers is not. In this
case, we have to save the value of some register to memory. This
process is called register spilling. Unlike in imperative languages,
the value of a variable in functional languages does not change after
its definition. Therefore, it is better to save the value of a variable
as early as possible, if at all, in order to make the room.

Whenever a variablex needs to be saved,RegAlloc.g returns
a valueToSpill, and returns to the definition ofx to insert a
virtual instructionSave. In addition, since we want to removex
from the set of live variables at the point wherex is spilled, we
insert another virtual instructionForget to excludex from the set
of free variables. For this purpose, valueToSpill carries not only
the listxs of spilled variables, but also the instruction sequencee
in which Forget has been inserted. After savingx, we redo the
register allocation againste.

Saving is necessary not only when registers are spilled, but
also when functions are called. MinCaml adopts the caller-save
convention, so every function call is assumed to destroy the values
of all registers. Therefore, we need to save the values of all registers
that are live at that point, as implemented in an auxiliary function
RegAlloc.g’ call. This is whyToSpill holds thelist of spilled
variables.

When saving is unnecessary, we return the register-allocated
instruction sequencee′ (with the newregenv) in another value
NoSpill.

To put it altogether, the data type for the returned values of these
functions is defined as follows:

type g_result =
NoSpill of

SparcAsm.t (* instruction sequence
with registers allocated *)

* Id.t M.t (* new regenv *)
| ToSpill of



SparcAsm.t (* instruction sequence
with Forget inserted *)

* Id.t list (* spilled variables *)

4.13.3 Unspilling

A spilled variable will be used sooner or later, in which case
RegAlloc.g’ (the function that allocates registers in individual
instructions) raises an exception as it cannot find the variable
in regenv. This exception is handled in an auxiliary function
RegAlloc.g’ and unspill, where virtual instructionRestore
is inserted to restore the value of the variable from memory to a
register.

However, this insertion ofRestore pseudo-instructions breaks
a fundamental property of our virtual assembly that every variable
is assigned just one register. In particular, it leads to a discrepancy
when two flows of a program join after conditional branches. For
example, in thethen-clause of expression(if f() then x −
y else y − x) + x + y, variablex may be restored into register
r0 andy may be restored intor1, while they may be restored in the
other order in theelse-clause. (A similar discrepancy also arises
concerning whether a variable is spilled or not.)

In imperative languages, such “discrepancies” are so common
that a more sophisticated notion ofdef-use chainsis introduced
and used as the unit of register allocation (instead of individual
variables). In MinCaml, fortunately, those cases are less common
and can be treated in a simpler manner: whenever a variable is not
in the same register after conditional branches, it is just assumed
as spilled (and needs to be restored before being used again), as
implemented in an auxiliary functionRegAlloc.g’ if.

4.13.4 Targeting

When allocating registers, we not only avoid live registers, but also
try to reduce unnecessary moves in the future. This is called regis-
ter targeting [5], itself an instance of register coalescing [18]. For
example, if a variable being defined will be the second argument
of a function call, we try to allocate it on the second register. For
another example, we try to allocate a variable on the first register
if it will be returned as the result of a function. These are imple-
mented inRegAlloc.target. For this purpose,RegAlloc.g and
RegAlloc.g’ also takes registerdest as an argument, where the
result of computation will be stored.

4.13.5 Summary

All in all, the main functions in moduleRegAlloc can be described
as follows.

RegAlloc.g dest cont regenv e allocates registers in in-
struction sequencee. It takes into account the continuation instruc-
tion sequencecont when calculating live variables. Already allo-
cated variables ine are substituted with registers according to the
mappingregenv. The value computed bye is stored todest.

RegAlloc.g’ is similar to RegAlloc.g but takes individ-
ual instructions (SparcAsm.exp) instead of instruction sequences
(SparcAsm.t). However, it still returns instruction sequences—
not individual instructions—so that spilling and unspilling can
be inserted. It uses auxiliary functionsRegAlloc.g’ call and
RegAlloc.g’ if to deal with spilling due to function calls and
conditional branches, while unspilling is treated by another auxil-
iary functionRegAlloc.g’ and unspill.

All of the functions above return eitherNoSpill(e’, regenv2)
orToSpill(e, xs). The former means that register allocation has
succeeded:regenv2 is the new mapping from variables to regis-
ters, ande’ is the instruction sequence where all variables have
been substituted with the allocated registers. The latter means that
register spilling is required:xs is the list of spilled variables, and
e is the instruction sequence whereForget pseudo-instructions

have been inserted. Both results must be treated by every caller of
RegAlloc.g or RegAlloc.g’.

Finally, RegAlloc.h takes a top-level function definition and
allocates registers.RegAlloc.f takes a whole program and allo-
cates registers. Actually, it is the only function exported by module
RegAlloc.

4.14 Assembly Generation (256 Lines)

val Emit.f : ochan -> SparcAsm.prog -> unit

(* private *)
type dest = Tail | NonTail of Id.t
val Emit.h : ochan -> SparcAsm.fundef -> unit
val Emit.g : ochan -> dest * SparcAsm.t -> unit
val Emit.g’ : ochan -> dest * SparcAsm.exp -> unit

At last, we reach the final phase: assembly generation. Having
done most of the hard work (register allocation, in particular), it is
easy to outputSparcAsm.t as real SPARC Assembly by replac-
ing virtual instructions with real ones. Conditional expressions are
implemented by comparisons and branches.Save andRestore are
implemented with stores and loads by calculating the setstackset
of already saved variables (to avoid redundant saves) and the list
stackmap of their locations in the stack. Function calls are a little
trickier:Emit.shuffle is used to potentially re-arrange arguments
in register order.

(* given a list (xys) of parallel moves,
implements it by sequential moves
using a temporary register (tmp) *)

let rec shuffle tmp xys =
(* remove identical moves *)
let _, xys =

List.partition (fun (x, y) -> x = y) xys in
(* find acyclic moves *)
match (List.partition

(fun (_, y) -> List.mem_assoc y xys)
xys) with

| [], [] -> []
| (x, y) :: xys, [] ->

(* no acyclic moves; resolve a cyclic move *)
(y, tmp) :: (x, y) ::
shuffle tmp

(List.map
(function
| (x’, y’) when x’ = y -> (tmp, y’)
| xy -> xy)

xys)
| xys, acyc -> acyc @ shuffle tmp xys

Tail calls are detected and optimized in this module. For this
purpose, functionEmit.g (which generates assembly for instruc-
tion sequences) as well as functionEmit.g’ (which generates
assembly for individual instructions) takes a value of data type
Emit.dest that represents whether we are in a tail position:

type dest = Tail | NonTail of Id.t

If this value is Tail, we tail-call another function by a jump
instruction, or set the result of computation to the first register and
return by theret instruction of SPARC. If it isNonTail(x), the
result of computation is stored inx.

4.15 Main Routine, Auxiliary Modules, and Runtime
Library (45 + 228 + 197 Lines)

After parsing command-line arguments, the main routine of Min-
Caml applies all the processes above. It also repeats the five op-
timizations fromβ-reduction to elimination of unnecessary defi-
nitions until their result reaches a fixed point (or the number of
iterations reaches the maximum specified by a user).



Finally, we provide a few auxiliary modules, write the runtime
routinestub.c which allocates the heap and stack of MinCaml,
implement external functionslibmincaml.s in SPARC Assembly
for I/O and math, and obtain The MinCaml Compiler.

5. Efficiency
The main point of MinCaml was to let students understand how
functional programs can be compiled into efficient code. So we
had to demonstrate the efficiency of the code generated by Min-
Caml. For this purpose, we implemented several applications and
compiled them with MinCaml, Objective Caml, and GCC. Each
program was written in the optimal style of each language imple-
mentation, so that the compiler produces as fast code as possible
(to the best of our knowledge) without changing the essential al-
gorithms. These comparisons are never meant to be “fair,” in the
sense that MinCaml supports only a tiny language—in fact, it is
intendedto be minimal—while other compilers support real lan-
guages. Rather, they must be understood as informal references.

First, as small benchmarks, we chose three typical functional
programs: Ackermann, Fibonacci, and Takeuchi (also known as
Tak) functions. The first two of them test recursion on integers,
and the last on floating-point numbers. The results are shown in
Table 3. All the numbers are user-level execution times in seconds,
measured by/usr/bin/time.

The machine is Sun Fire V880 (4 Ultra SPARC III 1.2GHz,
8GB main memory, Solaris 9). MinCaml is given the option
-inline 100, meaning to inline functions whose size (the number
of syntactic nodes in K-normal forms) is less than 100. OCamlOpt
is version 3.08.3 and given the options-unsafe -inline 100.
GCC-m32 and GCC-m64 are version 4.0.0 20050319 and given
the option-O3. GCC -m32 -mflat is version 3.4.3 (since more
recent versions do not support-mflat) and given the same op-
tion -O3. Note that GCC4 (and, to a lesser degree, GCC3) often
produces faster code than older versions such as GCC2.

Although small benchmarks typically suffer from subtle effects
of low-level mechanisms in a particular processor—such caches,
alignments, and pipelines—our programs did not: indeed, looking
at the assembly generated by each compiler, we found more obvi-
ous reasons for our results:

• Objective Caml and GCC3 do not inline recursive functions,
while MinCaml and GCC4 do.

• Objective Caml boxes—i.e., allocates in the heap—floating-
point numbers passed as arguments (or returned as results) of
functions in order to support polymorphism, though it does sup-
port unboxedarrays(and records) of floating-point numbers.

• GCC without-mflat (both -m32 and-m64) uses the register
window mechanism of SPARC, which is almost always less ef-
ficient than other function calling conventions because it saves
(and restores)all registers including unused ones.

• GCC with -mflat uses a callee-save convention instead of
register windows, which is still suboptimal since it only saves
registers in the prologues of functions (and restores them in
their epilogues), not in the middle of them.

• GCC4 reduces arithmetic expressions such as(n−1)−2, which
appears after the inlining of Fibonacci, ton− 3.

• GCC -m32 (with or without -mflat) passes floating-point
number function arguments through integer registers, which
incurs an overhead.

Second, we tested larger applications: ray tracing, a harmonic
function, the Mandelbrot set, and Huffman encoding. All of them
are first written in C and then ported to ML. In Objective Caml,
we adopted an imperative style with references andfor-statements

Min- OCamlOpt GCC4 GCC4 GCC3
Caml -unsafe -m32 -m64 -m32

-mflat

Ackermann 0.3 0.3 1.3 1.8 1.0
Fibonacci 2.5 3.9 1.5 1.4 6.1
Takeuchi 1.6 3.8 3.7 1.6 5.5

Ray Tracing 3.4 7.5 2.3 2.9 2.6
Harmonic 2.6 2.6 2.0 2.0 2.0
Mandelbrot 1.8 4.6 1.7 1.7 1.5
Huffman 4.5 6.6 2.8 3.0 2.9

Table 3. Execution Time of Benchmark Programs

whenever it is faster than a function style. However, we always
used tail recursion in MinCaml, since it does not have any other
loop construct. The results are also in Table 3. Again, Objective
Caml tends to be slower than other compiles because of boxing
when floating-point numbers are used as arguments of functions or
elements of tuples (which cannot be replaced with arrays because
they contain other types of elements as well). MinCaml also tends
to be a little slower than GCC because loops are implemented by
tail recursive functions, and entering to (or leaving from) them
requires extra saves (or restores) of variables not used within the
loops. In addition, GCC implements instruction scheduling for
floating-point operations in order to hide their latencies, while
MinCaml does not.

To summarize, for these modest benchmarks that can be written
in our minimal language, the efficiency of MinCaml is comparable
to major compilers such as Objective Caml and GCC with the speed
ratio varying from “6 times faster” at best to “twice slower” at
worst.

6. Related Work
There exist many compilers for ML and its variants: Comp.Lang.ML
FAQ [1] gives a comprehensive list. However, I am not aware of
any publicly available compiler that is as simple and efficient as
MinCaml. There also exist various textbooks and tutorials on com-
pilation of functional languages, but most of them present com-
pilers into byte code or other medium-level languages—not native
assembly—which do not satisfy our requirement for efficiency.
The only exception that I am aware of is a well-known book by
Appel [5], which uses CPS as the intermediate language and is
distinct from MinCaml as argued below.

Hilsdale et al. [14] presented a compiler for a subset of Scheme,
implemented in Scheme, that generates native assembly. However,
efficiency of the generated code is not discussed at all, perhaps
because it was not a goal in their compiler.

Sarkar et al. [23] developed a compiler course (using Scheme)
based on thenanopassframework, where the compiler consists
of many small translation (or verification) processes written in
a domain specific language developed for this purpose. Unlike
nanopass, we chose to use ordinary ML as the meta language in
order to avoid the overhead of understanding such a domain specific
language itself, and to utilize the type system of ML for statically
checking the syntactic validity of intermediate code evenbefore
running the compiler.

Feeley [10] presented a Scheme-to-C compiler which is sup-
posed to be explained in “90 minutes” and implemented in less
than 800 lines of Scheme. Its main focuses are on CPS conver-
sion and closure conversion for first-class continuations and higher-
order functions. Optimizations are out of scope: indeed, the com-
piler is reported to produce 6 times slower code than Gambit-C



does. By contrast, our compiler is a little more complex but much
more efficient.

Dijkstra and Swierstra [9] are developing a compiler for Haskell
based on attribute grammar. It is presented as a sequence of imple-
mentations with increasing complexities. So far, their main focus
seems to be on typing. To the best of my knowledge, little code
or no documentation is available for compilation at this moment.
In addition, the most complex version of their compiler is already
about 10,000 lines long, excluding an implementation of their do-
main specific language based on attribute grammar.3

One [6] of Appel’s series of textbooks implements a compiler
of an imperative language (called Tiger)in ML. This language is
not primarily functional and is fundamentally different from ML.
For instance, higher-order functions and type inference are only
optional [6, Chapters 15 and 16]. With those options, the compiler
is much more complex than ours.

MinCaml adopts a variant of K-normal forms [7] as an inter-
mediate language, which itself is a variant of A-normal forms [11].
Another major intermediate language of functional language com-
pilers is continuation passing style (CPS) [5]. The crucial difference
between K-normal forms and CPS, which lead us to choose the for-
mer, is conditional branches in non-tail positions: since all condi-
tional branches must be in tail positions in CPS, non-tail branches
are converted to tail branches with closure creations and func-
tion applications, which incur overheads and require optimizations
(such as the so-called “callee-save” registers or inter-procedural
register allocation).

On the other hand, however, CPS compiles function calls in
a very elegant way withouta priori assuming the notion of call
stacks. Besides, K-normal forms have their own complication—
which in essence stems from the same root—with non-tail branches
(cf. the second and third paragraphs of Section 4.13.3) and, to
a lesser degree,let-expressions (cf. the last paragraph of Sec-
tion 4.13.1). Thus, it would also be interesting to see how simple
and efficient compiler for education can be developed by using CPS
instead oflet-based intermediate languages.

As we saw in Section 4.13, the most complex process in The
MinCaml Compiler was register allocation. Although there exist
more standard methods than ours such as graph coloring [8] and
linear scan [21], we find them less clear (though much faster at
compile-time) in the context of functional languages, in particular
concerning where and how to insert spilling and unspilling.

7. Conclusion
We presented an educational compiler, written in 2000 lines of ML,
for a minimal functional language. For several applications that can
be written in this language, we showed that our compiler produces
assembly code of comparable efficiency to Objective Caml and
GCC.

The use of MinCaml in Tokyo has been successful. Most of the
groups accomplished the implementation of compilers and ran ray
tracing on their CPUs. Some students liked ML so much that they
started a portal site (http://www.ocaml.jp/) and a mailing list
as well as a translation of the manual of Objective Caml, all in
Japanese.

Like many program transformations in functional languages,
most processes in our compiler are implemented by tree traver-
sal over abstract syntax and have many similarities to one an-
other. For instance, functionsKNormal.fv andClosure.fv are
almost identical except for the necessary differences such as
let rec andmake closure. This kind of similarities could per-

3 Of course, line numbers are not always an exact measure of software
complexity—in particular for different languages—but they often approxi-
mate it with a certain precision.

haps be exploited to simplify the compiler even more through
subtyping (by means of polymorphic variants [13], for exam-
ple) or generic programming in the style of Generic Haskell
(http://www.generic-haskell.org/).

Although our language was designed to be minimal, its ex-
tensions would be useful for more advanced—maybe graduate—
courses, and perhaps as a vehicle for research prototypes. Features
required for these purposes include polymorphism, data types, pat-
tern matching, garbage collection, and modules. We are looking
into the tradeoff between simplicity and efficiency of various meth-
ods for implementing them.

We chose SPARC Assembly as our target code because of
its simplicity and availability in Tokyo, but re-targeting to IA-32
would also be interesting from the viewpoint of popularization
in spite of the more complex instruction set architecture. We are
also looking into this direction—in particular, how to adapt our
code generator to 2-operand instructions (which are destructive by
definition) in a “functional” way.
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